Путь искусственного интеллекта от фантастической идеи к научной отрасли

Раскрыть потенциал

По прогнозам PwC, благодаря искусственному интеллекту мировая экономика может вырасти к 2030 году дополнительно на $15,7 трлн. Мировой рынок технологий ИИ будет прибавлять примерно 31% ежегодно, предсказывают аналитики Frost & Sullivan. В компании уверены, что уже в 2022 году он достигнет $52,5 млрд. Это вчетверо больше того объема, который аналитики фиксировали в 2017 году.

Среди основных векторов использования искусственного интеллекта компаниями — управление рисками и обеспечение кибербезопасности, автоматизация рутины, помощь в принятии оптимальных решений. Кроме того, бизнес успешно применяет ИИ, чтобы эффективнее собирать информацию для прогнозов и автоматизировать клиентские операции.

Как ИИ применяется в разных секторах экономики

  • Здравоохранение: анализ медицинских данных, повышение точности диагностики различных заболеваний;
  • кибербезопасность: использование алгоритмов глубокого обучения, позволяющих выявлять аномалии в поведении сети;
  • сельское хозяйство: управление агроботами, аккуратный сбор урожая;
  • транспорт: автоматические системы управления грузовыми железнодорожными составами, исключающие человеческий фактор, беспилотные автомобили;
  • e-commerce: «умные» рекомендательные системы для покупателей;
  • ретейл: планирование цепочек поставок, наблюдение за поведением потребителей, автоматизация работы складов;
  • маркетинг: автоматизация таргетированной рекламы, разработка персональных предложений для потребителя;
  • финансы: алгоритмическая торговля, обработка банковских данных, формирование кредитных рейтингов;
  • спорт: сбор и анализ действий игроков, виртуальные ассистенты для тренеров и судей.

Ожидается, что к 2025 году человечество будет хранить около 175 зеттабайт (175 млрд Гб) данных. Уже сегодня большую их часть генерируют не люди, а машины — различные информационные системы, датчики, интернет вещей. Очевидно, что обработать всю эту информацию и извлечь из нее пользу для бизнеса без искусственного интеллекта и машинного обучения просто невозможно. Тем более, что ее количество продолжает расти.

По подсчетам IDC, объем данных, созданных в течение следующих трех лет, превысит количество информации, которое появилось за последние три десятилетия. А за ближайшую пятилетку мир сгенерирует втрое больше данных, чем за предыдущую. И это будет подталкивать к активному использованию ИИ для сбора и обработки информации.

По мнению гендиректора SberCloud Евгения Колбина, именно «облака» станут главным драйвером развития ИИ в ближайшие годы, так как только с помощью облачных технологий можно преодолеть главные барьеры развития ИИ — недостаточную доступность высокопроизводительных вычислительных ресурсов для работы с ИИ и острую нехватку специалистов — дата-сайентистов, дата-аналитиков и дата-инженеров. Сейчас почти во всех отраслях наблюдается острая нехватка высококвалифицированных специалистов для работы с данными. Платформа QuantHub, которая специализируется на подборе специалистов в сфере Data Science, подсчитала, что на три объявления о вакансии приходится всего один потенциальный соискатель. По словам Колбина, именно развитие облачных ML-сервисов и AIaaS (Artificial Intelligence as a Service) позволит искусственному интеллекту в полной мере раскрыть свой бизнес-потенциал.

Доминирующая парадигма 1955-1990 гг.

В 1960-х годах символические подходы достигли большого успеха в моделировании разумного поведения в небольших демонстрационных программах. В 1960-е годы исследования в области ИИ проводились в трех учреждениях: Университете Карнеги-Меллона , Стэнфорде и Массачусетском технологическом институте , и, как описано ниже, каждый из них разработал свой собственный стиль исследования. Ранние подходы, основанные на кибернетике или искусственных нейронных сетях, были отброшены или отодвинуты на второй план.

Когнитивное моделирование

Экономист Герберт Саймон и Аллен Ньюэлл изучили человеческие навыки решения проблем и попытались формализовать их, и их работа заложила основы области искусственного интеллекта, а также когнитивной науки , исследований операций и науки управления . Их исследовательская группа использовала результаты психологических экспериментов для разработки программ, имитирующих методы, которые люди использовали для решения проблем. Эта традиция, основанная на университете Карнеги-Меллона , в конечном итоге привела к развитию архитектуры Soar в середине 1980-х годов.

На основе логики

В отличие от Саймона и Ньюэлла, Джон Маккарти считал, что машинам не нужно моделировать человеческое мышление, а вместо этого следует пытаться найти суть абстрактного мышления и решения проблем, независимо от того, используют ли люди одни и те же алгоритмы. Его лаборатория в Стэнфорде ( SAIL ) сосредоточилась на использовании формальной логики для решения широкого круга задач, включая представление знаний , планирование и обучение . Логика также была в центре внимания работы в Эдинбургском университете и других странах Европы, которая привела к развитию языка программирования Prolog и науки о логическом программировании .

Антилогичный или «неряшливый»

Исследователи из Массачусетского технологического института (такие как Марвин Мински и Сеймур Паперт ) обнаружили, что решение сложных проблем со зрением и обработкой естественного языка требует специальных решений — они утверждали, что никакой простой и общий принцип (например, логика ) не может охватить все аспекты разумного поведения. Роджер Шенк охарактеризовал их «анти-логические» подходы как « неряшливые » (в отличие от « аккуратных » парадигм в CMU и Стэнфорде).
Commonsense база знаний (например, Дуг Ленат «s Сус ) является примером„потрепанного“ИИ, так как они должны быть построены вручную, одна сложной концепцией , в то время.

Основанный на знаниях

Когда примерно в 1970 году стали доступны компьютеры с большой памятью, исследователи всех трех традиций начали встраивать знания в приложения ИИ. Революция в области знаний была вызвана осознанием того, что многие простые приложения ИИ потребуют огромных объемов знаний.

Искусственный интеллект сегодня: нейросети и машинное обучение

Технологию ИИ можно реализовывать по-разному. Один из способов – нейросети. Нейросеть строится по тому же принципу, что и нервные сети в живом организме, отсюда и название. В организме в сеть соединяются нервные клетки – нейроны, они образуют нервную систему. А в искусственной нейросети используются простые процессоры – вычислительные элементы, которые соединяются и взаимодействуют по такой же схеме.

В отличие от обычных алгоритмов нейросети способны обучаться на основе опыта. Нейросети анализируют и выявляют связи между данными на входе и выходе, обобщают данные и формируют решения задач. Чтобы нейросети могли функционировать таким образом, используются методы машинного обучения. Причём в случае с нейросетями такое обучение требует много вычислительных ресурсов.

Чему вы сможете научить нейросеть, зависит от входных данных. Чем больше данных, тем качественнее будет обучение. Можно научить нейросеть отличать одни объекты от других, сравнивать и прогнозировать. Обучение нейросети похоже на обучение детей, когда им показывают картинку и говорят: «Это кошка». В случае с нейросетями они получают очень много таких картинок с объясняющими ярлыками и учатся распознавать отдельные элементы, которые затем смогут совмещать. Входное изображение попадает в некую фильтрующую систему. Фильтры в ней разные по размеру и по сложности элементов, которые могут распознать – у каждого есть свой набор признаков. Изображение многократно фильтруется в этой системе. Когда много элементов распознано, то нейросеть составляет прогноз: с такой-то вероятностью этот объект – человек.

Так появились нейросети, которые прогнозируют курс акций на завтра, распознают написанные от руки цифры индекса на почтовом конверте и определяют на снимке больной орган. Для их обучения использовали числовые данные о курсах на бирже и изображения написанных цифр, больных и здоровых органов.

Проблема заключалась в том, что нейросети часто ошибались, потому что трудно было собрать действительно большие выборки данных для обучения. В 2010 году появилась база изображений ImageNet: 15 миллионов изображений в 22 тысячах категорий. Доступ был открытым: данные мог использовать любой исследователь. В итоге стало возможным качественно обучать ИИ. Нейросети стали более развитыми, доступными и прочно интегрировались в повседневную жизнь.

Netflix [развлекательные сервисы]

Крупнейший и один из самых успешных стриминговых сервисов осуществляет применение искусственного интеллекта, чтобы рекомендовать пользователям наиболее интересные сериалы и фильмы. Система опирается на историю просмотров человека, а также на привычки других людей (аудитория сегментируется по возрасту, географии, привычкам и расходам).

Netflix отчасти общается с ИИ более свободно и нетрадиционно. Так, в 2016 году в каталоге фильмов появилась короткометражка, созданная именно для ИИ. Фильм сделан для тестирования кодеков, которые используются для шифровки и дешифровки видеопотока. Они же проверяют качество вещания в 4K.

Другой проект компании – «Другая сторона ветра». Это фильм Орсона Уэллса, снятый в 1970-х, но не прошедший все этапы монтажа при жизни режиссёра. Система на базе ИИ делала монтаж уже в наши дни, и, по словам разработчиков, значительно улучшила качество изображения (до 4K).

Читайте: Что такое большие данные и для чего они нужны

Искусственный разум — угроза будущему или дитя человечества?

Известные американские учёные, такие как Илон Маск и Стивен Хокинг, говорят о том, что ИИ — это угроза человечеству. Они предупреждают о том, что ИИ может выйти из под контроля человека и действовать самостоятельно, в том числе во вред человеку. Подобные сценарии мы уже видели в “Терминаторе” и других научно-фантастических фильмах, другое дело что известные учёные стали открыто об этом говорить. Также Илон Маск предупреждает, что если ИИ будет в руках только одного человека или организации, то это может быть опасно для всех остальных людей, и призывает иметь межгосударственный контроль за распространением ИИ.

Алгоритмы и редакторы

Первая волна ИИ породила интернет-компании совершенно нового типа. В Китае лидером среди них является Jinri Toutiao (что означает «Сегодняшние заголовки»). Основанную в 2012 году Toutiao иногда называют китайским BuzzFeed, потому что оба сайта служат агрегаторами, преподносящими пользователю «оптимизированные» под его интересы новости. Но на «оптимизации» под индивидуального пользователя сходство и заканчивается. В BuzzFeed штат молодых редакторов ловко готовит оригинальный контент. «Редакторы» Toutiao — это алгоритмы. 

Механизмы ИИ Toutiao ищут в интернете контент, используя инструменты обработки естественного языка и компьютерного зрения для анализа материалов широкой сети партнерских сайтов и утвержденных источников. Затем они, опираясь на прошлое поведение своих пользователей — их клики, данные о прочтении, мнения, комментарии и так далее, — создают персонализированные новости, соответствующие интересам каждого человека.

И чем больше этих кликов, с тем большей точностью Toutiao будет предлагать им контент, который они хотели бы увидеть. Эта положительная обратная связь позволила создать одну из самых востребованных платформ контента в интернете, в приложении которой пользователи проводят в среднем по 74 минуты в день.

Медицина

Искусственный интеллект широко используется для поддержки принятия решений в медицине. Но как вам такой пример: китайский интеллектуальный робот Xiaoyi («Сяо И») впервые сдал экзамен на врача и получил лицензию на врачебную деятельность.

Разработка компании iFlytek находит и анализирует информацию о пациенте. К работе он приступит в марте. Предполагается, что Xiaoyi будет ассистировать врачам, чтобы повысить качество их работы. Робот сосредоточится на противоопухолевой терапии, а также на обучении врачей общей практики, которых в сельских районах Китая очень мало.

Ещё одно интересное решение – Wave Clinical Platform от ExcelMedical. Система следит за жизненными показателями пациента и предупреждает врачей за шесть часов до его возможной скоропостижной смерти. Платформа системно анализирует информацию и рассчитывает риски неблагоприятного исхода.

В рамках тестов в медицинском центре Питтсбургского университета система предотвратила шесть смертей тяжелобольных пациентов. Человек на такое просто не способен, потому что не придаст значение небольшому изменению показателей и не найдёт связь между ними.

Система DeepFaceLIFT, разработанная учёными Массачусетского технологического института, способна распознавать уровень боли по микровыражениям лица. Она решает очень сложную задачу, так как каждый человек выражает боль по-разному. DeepFaceLIFT позволит понять, кому действительно нужны обезболивающие, а кто страдает зависимостью от наркотических препаратов.

Система для анализа речи и поиска признаков психических заболеваний – разработка IBM. Специалисты отдела по вычислительной психиатрии и нейровизуализации создали интеллектуальную систему, которая может предсказать развитие психоза по речи пациента.

Пациентам предлагалось просто рассказать о себе. Система могла определить, что речь человека стала беднее, он перескакивает с одной идеи на другую и т.п. Это характерные признаки психоза.

После улучшения системы пациентам предложили пересказать ей только что прочитанную историю. На этих примерах искусственный интеллект в 83% случаев ставил правильный диагноз. Это объективно выше, чем у врачей, даже с солидным опытом.

Отличие искусственного интеллекта от естественного

Интеллект можно определить как общую умственную способность к рассуждению, решению проблем и обучению

В силу своей общей природы интеллект интегрирует когнитивные функции, такие как восприятие, внимание, память, язык или планирование. естественный интеллект отличает осознанное отношение к миру

Мышление человека всегда эмоционально окрашено, и его нельзя отделить от телесности. Кроме того, человек — существо социальное, поэтому на мышление всегда влияет социум. ИИ не имеет отношения к эмоциональной сфере и социально не ориентирован.

Как сравнить человеческий и компьютерный интеллекты?

Сравнить мышление человека с искусственным интеллектом можно исходя из нескольких общих параметров организации мозга и машины. Деятельность компьютера, как и мозга, включает четыре этапа: кодирование, хранение, анализ данных и выдачу результата. Кроме того, мозг человека и ИИ могут самообучаться в зависимости от данных, полученных из окружающей среды. Также человеческий мозг и машинный интеллект решают проблемы (или задачи), используя определенные алгоритмы.

У компьютерных программ есть IQ?

Нет. Показатель IQ связан с развитием интеллекта человека в зависимости от возраста. ИИ в чем-то превышает некоторые человеческие способности, например может удерживать в памяти огромное количество цифр, но это не имеет отношения к IQ.

Что такое тест Тьюринга?

Алан Тьюринг разработал эмпирический тест, который показывает, способна ли программа уловить все нюансы поведения человека до такой степени, что человек не сможет определить, с кем именно он общается — с ИИ или с живым собеседником. Тьюринг предложил, чтобы сторонний наблюдатель оценивал разговор между человеком и машиной, которая отвечает на вопросы. Судья не видит, кто именно отвечает, но знает, что один из собеседников — ИИ. Разговор ограничен только текстовым каналом (компьютерная клавиатура и экран), поэтому результат не зависит от способности машины отображать слова как человеческую речь. В случае, если программе удается обмануть человека, считается, что она эффективно справилась с тестом.

Символьный подход

Символьный подход к ИИ — совокупность всех методов исследования искусственного интеллекта, основанных на высокоуровневых символических (читаемых человеком) представлениях о задачах, логике и поиске. Символьный подход широко применялся в исследованиях ИИ в 1950–80-х годах. Одной из популярных форм символьного подхода являются экспертные системы, использующие сочетание определенных правил производства. Производственные правила связывают символы в логические связи, которые подобны алгоритму If-Then. Экспертная система обрабатывает правила, чтобы сделать выводы и определить, какая дополнительная информация ей нужна, то есть какие вопросы задавать, используя удобочитаемые символы.

Логический подход

Термин «логический подход» предполагает апеллирование к логике, размышлениям, решению задач с помощью логических шагов. Логики еще в XIX веке разработали точные обозначения для всех видов объектов в мире и отношений между ними. К 1965 году существовали программы, которые могли решить любую логическую задачу (пик популярности данного подхода пришелся на конец 1950–70-х годов). Сторонники логического подхода в рамках логического искусственного интеллекта надеялись выстроить на таких программах (в частности, записанных на языке Prolog) интеллектуальные системы. Однако у такого подхода два ограничения. Во-первых, нелегко взять неформальное знание и изложить его в формальных терминах, которые требуются для обработки ИИ. Во-вторых, есть большая разница между решением проблемы в теории и ее решением на практике. Даже проблемы с несколькими сотнями фактов могут исчерпать вычислительные ресурсы любого компьютера, если у него нет каких-либо указаний относительно того, какие рассуждения надо использовать в первую очередь.

Агентно-ориентированный подход

Агент — это то, что действует (от лат. agere, «делать»). Конечно, все компьютерные программы что-то делают, но ожидается, что компьютерные агенты будут делать больше: работать автономно, воспринимать сигналы окружающей среды (с помощью специальных датчиков), адаптироваться к изменениям, создавать цели и выполнять их. Рациональный агент — это тот, кто действует так, чтобы достичь наилучшего ожидаемого результата.

Гибридный подход

Предполагается, что этот подход, который стал популярным в конце 80-х, работает наиболее эффективно, так как представляет собой сочетание символьных и нейронных моделей. Гибридный подход увеличивает когнитивные и вычислительные возможности машины.

Инвестиционное развитие ИИ

Согласно прогнозам экспертов компании Gartner, к началу 2020-х годов практически все выпускаемые программные продукты будут использовать технологии искусственного интеллекта. Также специалисты предполагают, что около 30% инвестиций в цифровую сферу будут приходиться на ИИ.

По мнению аналитиков Gartner, искусственный интеллект открывает новые возможности для кооперации людей и машин. При этом процесс вытеснения человека ИИ невозможно остановить и в будущем он будет ускоряться.

В компании PwC считают, что к 2030 году объем мирового валового внутреннего продукта вырастет примерно на 14% за счет быстрого внедрения новых технологий. Причем примерно 50% прироста обеспечит повышение эффективности производственных процессов. Вторую половину показателя составит дополнительная прибыль, полученная за счет внедрения ИИ в продукты.

Первоначально эффект от использования искусственного интеллекта получит США, так как в этой стране созданы лучшие условия для эксплуатации машин на ИИ. В дальнейшем их опередит Китай, который извлечет максимальную прибыль, внедряя подобные технологии в продукцию и ее производство.

Эксперты компании Saleforce заявляют, что ИИ позволит увеличить доходность малого бизнеса примерно на 1,1 триллиона долларов. Причем произойдет это к 2021 году. Отчасти добиться указанного показателя удастся за счет реализации решений, предлагаемых ИИ, в системы, отвечающие за коммуникацию с клиентами. Одновременно с этим будет улучаться эффективность производственных процессов благодаря их автоматизации.

Внедрение новых технологий также позволит создать дополнительные 800 тысяч рабочих мест. Эксперты отмечают, что указанный показатель нивелирует потери вакансий, произошедшие из-за автоматизации процессов. По прогнозу аналитиков, основанных на результатах опроса среди компаний, их расходы на автоматизацию производственных процессов к началу 2020-х годов возрастут примерно до 46 миллиардов долларов.

В России также ведутся работы в области ИИ. На протяжении 10 лет государство профинансировало более 1,3 тысячи проектов в данной сфере. Причем большая часть инвестиций пошло на развитие программ, не связанных с ведением коммерческой деятельности. Это показывает, что российское бизнес-сообщество пока не заинтересовано во внедрении технологий искусственного интеллекта.

В общей сложности на указанные цели в России инвестировали порядка 23 миллиардов рублей. Размер государственных субсидий уступает тем объемам финансирования сферы ИИ, которые демонстрируют другие страны. В США на эти цели каждый год выделяют порядка 200 миллионов долларов.

В основном в России из госбюджета выделяют средства на развитие технологий ИИ, которые затем применяются в транспортной сфере, оборонной промышленности и в проектах, связанных с обеспечением безопасности. Это обстоятельство указывает на то, что в нашей стране чаще инвестируют в направления, которые позволяют быстро добиться определенного эффекта от вложенных средств.

Приведенное выше исследование также показало, что в России сейчас накоплен высокий потенциал для подготовки специалистов, которые могут быть задействованы в разработке технологий ИИ. За 5 последних лет обучение по направлениям, связанным с ИИ, прошли примерно 200 тысяч человек.

Таблица с кодами ошибок для стиральных машин LG

Код ошибки Описание ошибки Причины возникновения ошибки
IE

Вода не поступает в бакВода не достигла перврго уровня за отведенное время (4 минуты).

1. Отсутствует вода в одопроводе.2. Низкое давление воды.3. Неисправен клапан залива воды.4. Неисправно реле уровня воды (прессостат).

PE

Ошибка датчика уровня воды (прессостата)Код ошибки отображается, если в течениеопределенного времени бак не был заполнен водой до номинального уровня (через 25 минут) или заполнение водой произошло быстрее отведенного времени (4 минуты).

1. Неисправен датчик уровня воды.2. Недопустимо низкое или чересчур высокое давление воды в водопроводе.

FE

Переполнение бакаКод ошибки отображается, если был достигнут предельный уровень воды в баке.

1. Причины возникновения ошибки могут быть вызваны дефектами электронного контроллера, датчика уровня или клапана залива воды.

dE Дверца люка закрыта

1. В большинстве случаев для сброса ошибки необходимо повторно закрыть люк. 2. Если это не помогло, проверяют исправность запорного устройства люка, а также сам электронный контроллер.

OE

Отсутствует слив водыОшибка возникает, если спустя 5 минут после начала работы сливного насоса, вода не была слита из бака.

1. Засорен тракт слива воды (система слива).2. Неисправен электронный контроллер.3. Неисправен сливной насос.4. Вышел из строя датчик уровня воды.
UE Нарушение балансировки барабана

1. В большинстве случаев для сброса ошибки необходимо вручную распределить белье в барабане (убрать комки) или добавить белье, если его мало. 2. В противном случае проверяют работоспособность электронного контроллера или выявляют дефекты привода барабана (подшипники и т. д.).

tE Недопустимая температура воды

1. Ошибка возникает, если в СМ неисправен датчик температуры (обрыв или короткое замыкание).

LE Ошибка блокировки

1. В большинстве случаев подобная ошибка бывает вызвана пониженным напряжением в питающей сети.  2. Также необходимо проверить исправность электронного контроллера и приводного мотора.

CE

Перегрузка электродвигателяПодобная ошибка чаще всего возникает в случае перегрузки СМ бельем.

1. Если после изъятия из барабаня лишнего белья ошибка возникает вновь, проверяют исправность электронного контроллера и приводного мотора.2. В СМ с прямым приводом (с индексом DD) дефект также проявляется в «подергивании» барабана.

E3 Ошибка определения загрузки

нет информации

AE Ошибка автовыключения

нет информации

E1 Утечка воды в поддон СМ

1. Произошла утечка воды в поддон СМ по причине разгерметизации бака, шлангов или других элементов СМ. 2. Неисправен датчик утечки воды.

HE Неисправен ТЭН нагрева воды

1. Проверяют ТЭН и цепи его питания.

SE Ошибка датчика Холла приводного мотора

1. Проверяют датчик Холла (устанавливается в СМ с прямым приводом, имеющие индекс DD), а также его проводные соединения.

Помните, что ликвидировать проявившуюся при эксплуатации машинки неисправность собственными силами удастся только технически подготовленным и обладающим навыками ремонта потребителям. Часть поломок, отображаемых СМ с помощью индикации кода ошибки, связана с внешними элементами водопроводной системы, что потребует вызова сантехника или звонка в технические службы. Другими причинами, провоцирующими вывод из строя машинки, становятся некорректно работающие или сломавшиеся компоненты электронной и механической компонентной базы. В таких случаях требуется замена неработающих частей, совершать подобные операции без привлечения профессиональных ремонтников крайне не рекомендуется.

Представленные в форме таблицы коды ошибок для стиральных машин LG следует всегда иметь под рукой, чтобы сократить потери времени при поиске причин поломки. Эта информация отсутствует в прилагаемых к товару Инструкциях и документации, и предназначена для сотрудников сервисных центров и служб ремонта бытовой техники. Обращаться за помощью к квалифицированным ремонтникам следует только в авторизованные компанией LG ремонтные мастерские, обладающие опытом починки и необходимой квалификацией при работе с продукцией корейского производителя. Вмешательство в конструкцию оборудования со стороны неподготовленных специалистов грозит полным выходом из строя дорогостоящей бытовой электроники.

Помните, что реагировать на появившийся на экране машинки LG код, представляющий собой буквенно-цифровое обозначение, следует незамедлительно, чтобы избежать эскалации проблемы и появления новой неисправности вследствие предыдущей.