Об одновременном использовании нескольких блоков питания при майнинге

Оглавление

Мультиплексный канал информационного обмена

В качестве физической среды передачи сигналов по общей шине мультиплексного канала информационного обмена между ИБП используется многожильный плоский кабель с волновым сопротивлением 120 Ом . Для исключения отражения сигнала в шине необходимо обеспечить согласование значений эквивалентного нагрузочного сопротивления шины и соответствующего волнового сопротивления кабеля. Рекомендуемая длина интерфейсного кабеля для подключения двух портов мультиплексного канала информационного обмена ИБП не должна превышать 3 м.

Общая шина состоит из четырех двухпроводных каналов: трех цифровых и одного аналогового. По цифровым каналам передаются сигналы: HOST — приоритет (захват магистрали), SYN — синхронизация и CAN — прием/передача данных о состоянии ИБП (рис. 3).

Рис. 3. Мультиплексный канал информационного обмена между ИБП

По аналоговому каналу осуществляется передача с трансформаторов тока (ТТ) сигналов, пропорциональных выходным токам (In) каждого ИБП. Выходные обмотки ТТ и их нагрузочные сопротивления Rт подключены через ограничительные сопротивления Ro к двухпроводной обшей шине аналогового канала межмодульного интерфейса (рис. 4).

Рис. 4. Схема подключения аналогового канала интерфейса ИБП к общей шине (ОШ)

На общей шине возникает напряжение, пропорциональное среднему значению выходных токов ИБП (Iср).

где k1 — коэффициент пропорциональности; n — число параллельно включенных ИБП.

Напряжение Uош поступает на соответствующий вход АЦП МК1 через аналоговый модуль формирования сигнала AVR.I (Iср) на плате управления каждого ИБП (рис. 4). На другой вход АЦП МК1 приходит сигнал LOAD.I, пропорциональный выходному току данного ИБП (In). В результате сравнения In и Iср МК1 принимает решение об изменении частоты инвертора, что сдвигает фазу выходного напряжения и выравнивает ток ИБП (In) до значения Iср. Погрешность измерения и разброс параметров элементов цепей обработки и масштабирования сигналов In, Iср определяют возможную точность распределения нагрузки между ИБП при параллельной работе, которая достигает 4–6%. Рекомендуемое количество параллельно включаемых ИБП не должно превышать 4.

Плата интерфейса параллельной работы ИБП является согласующим устройством, связывающим общую шину мультиплексного канала с МК1 платы управления. Плата параллельной работы (ППР) обеспечивает:

  • гальваническую развязку абонентов от линии передачи информации — общей шины (ОШ) за счет использования оптронных пар;
  • согласование уровней сигналов, передаваемых и принимаемых из ОШ.

Функциональная схема ППР приведена на рис. 5. ППР содержит четыре формирователя интерфейсных сигналов мультиплексного канала.

Рис. 5. Функциональная схема ППР

CAN-приемо-передатчик (типа SN65HVD230) обеспечивает согласование абонента с ОШ по уровню сигнала и вносимому сопротивлению и обеспечивает обмен данными между ОШ и МК1 ИБП. Цифровой формирователь сигналов синхронизации SYN передает в ОШ синхроимпульсы чтения и передачи данных. Формирователь сигналов захвата магистрали в данный период времени HOST обеспечивает приоритет одного из ИБП по обмену информации с другими ИБП. Аналоговый формирователь сигналов, пропорциональных выходному току ИБП (O/P I), содержит реле подключения канала к ОШ и L-C фильтр для помехозащищенности канала. При первоначальном включении системы подключение к ОШ трансформатора тока очередного ИБП происходит с помощью реле по сигналу PAR RLY, вырабатываемому МК1 при условии синхронизации выходной частоты данного ИБП с другими ИБП.

Включение параллельной системы ИБП осуществляется поочередным включением каждого ИБП сетевым автоматом в режим байпас. Когда последний ИБП после самотестирования войдет в этот режим, ИБП поочередно переводятся в инверторный режим. После выполнения условий синхронизации ИБП МК1 формирует сигнал включения выходного реле (ВР), подключающего ИБП к шине нагрузки (рис. 3). После выхода всех ИБП в инверторный режим подключается нагрузка. Наличие выходного реле в каждом устройстве позволяет отключить его в случае неисправности от общей шины нагрузки, обеспечивая тем самым работоспособность всей системы с остальными ИБП.

Особенности параллельного соединения АКБ

Как соединить два аккумулятора параллельно: плюс каждого элемента подсоединяют к плюсу последующего, а минус – к минусу.

Формулы (U – напряжение, I – ток, C – емкость, E – электрическая энергия):

Uобщ = U1 = U2 = U3 = Ui

Iобщ = I1 + I2 + I3 + Ii

C = const

Eобщ = ∑ Ei

Емкость системы

Параллельное подключение аккумуляторов позволяет увеличить емкость системы, не увеличивая напряжение. Например, при параллельном соединении трех идентичных аккумуляторов со схемы выше, напряжение батареи будет равно 12 В, а емкость увеличится до 600 Ач (200 Ач * 3).

Для чего используется

Чаще всего параллельное подключение АКБ используется в источниках аварийного или бесперебойного питания. Параллельное соединение аккумуляторов позволяет увеличить мощность, поэтому применяется также в тяжелой спецтехнике и в двигателях большегрузных автомобилей. Такой тип соединения распространен и на флоте: он обеспечивает работу аварийных систем связи и жизнеобеспечения, освещения и вспомогательных дизелей.

Подключение процессора

Для того чтобы запитать CPU, подается напряжение 12 вольт через четырехпиновый коннектор. Для мощных процессоров иногда используется разборный штекер, на котором еще есть 4 дополнительных пина (обозначается как 4 + 4). На материнке такой слот тоже только один, как и соответствующий провод на системном блоке.

p, blockquote 7,0,0,0,0 –>

Подключать его следует аналогично «мамке» – аккуратно вдавить в гнездо до щелчка фиксатора. Подобным способом он и извлекается – надавливаем на фиксатор, освобождая скобу, и аккуратно достаем провод.

p, blockquote 8,0,0,0,0 –>

Если позволяет конструкция материнки и корпуса, подключить подачу энергии к процессору, можно еще до монтажа основной платы, чтобы пустить провод за ней и тем самым освободить немного места в корпусе перед материнкой.

p, blockquote 9,0,0,0,0 –>

p, blockquote 10,0,0,0,0 –>

Советы по замене и профилактике блока питания

Тип и мощность устанавливаемого блока питания зависит от типа материнской платы и видеокарты компьютера, а также от размера корпуса ПК.

На сегодня лучшим выбором для покупки источника питания являются модульные блоки питания – они стоят немного дороже обычных, но вместо целого пучка кабелей обеспечивают присоединение лишь тех проводов, которые нужны в данный момент. Также это позволяет организовать максимальный поток воздуха внутри системного блока для его охлаждения.

Что касается мощности, ее лучше брать с небольшим запасом, в т.ч. на будущее, ориентируясь на 500-750 Вт, особенно если установлена игровая видеокарта в конфигурации SLI или Crossfire.

Однако в случае недорогой системы со встроенным видео подойдет и блок питания на 300 Вт.

Чтобы продлить срок службы источника питания необходимо периодически чистить его от накапливаемой внутри пыли с помощью пылесоса или продувки воздушным баллоном через отверстия. Это защитит БП от перегрева

Также важно не перекручивать шнуры питания внутри и снаружи корпуса ПК. Указанные меры обеспечат бесперебойную работу источника питания в течение многих лет

Этот «ИЛИ» тот?

Казалось бы, «простое» решение дилеммы прямого подключения состоит в том, чтобы всего лишь использовать диод между каждым источником питания и общей точкой, объединяющей все источники. Такой метод (Рисунок 2) обычно называют диодным «ИЛИ». Диодное «ИЛИ» очень эффективно тогда, когда нужно исключить возможность протекания тока вне общей нагрузки, но, как правило, недостаточно для устранения ошибок распределения между источниками питания с независимыми усилителями ошибки, поскольку излом характеристики проводимости диода достаточно резок для того, чтобы параметрические различия в уставках по-прежнему оставались причиной значительного дисбаланса источников.

Рисунок 2. В принципе, выходы нескольких источников питания могут быть
объединены с помощью диодов, изолирующих источники друг от
друга, но при такой конфигурации возникает множество проблем,
связанных с балансировкой и распределением токов.

Как правило, диодное «ИЛИ» требуется для работающих независимо источников питания, выходные токи которых могут быть как вытекающими, так и втекающими (работа в двух квадрантах). Эффект прямого параллельного соединения таких источников питания без использования диодов будет намного хуже, чем в случае одноквадрантных источников. В то время как одноквадрантные источники питания лишь теряют точность при подключении к общей нагрузке, двухквадрантные источники будут активно бороться за контроль над общим выходным напряжением. Это приведет к превышению токов, циркулирующих в группе источников питания, над током в нагрузке, и, возможно, станет причиной немедленной перегрузки одного или нескольких источников.

Кроме того, если диоды имеют отрицательный температурный коэффициент порога проводимости, они даже будут способствовать нарушению распределения токов в группе источников. Один из способов смягчения этой проблемы заключается в использовании выпрямителей с положительным температурным коэффициентом – на диодах Шоттки, или на полевых транзисторах, выполняющих функции диодов в схеме активного «ИЛИ», однако диоды могут снизить общий КПД за счет прямого падения напряжения, а активное «ИЛИ» может увеличить стоимость и сложность схемы.

В некоторых случаях диодное «ИЛИ» может способствовать повышению надежность на системном уровне. Особенно интересен случай, когда в одном из блоков питания происходит короткое замыкание выходного полевого транзистора или конденсатора, что может поставить под угрозу работу общей шины выходного напряжения. Диоды схемы «ИЛИ» быстро отсекут короткое замыкание от общей выходной шины и обеспечат устойчивость и надежность системы.

Распределение тока нагрузки между ИБП

Для того чтобы два или более ИБП с двойным преобразованием энергии, включенные на общую нагрузку, были загружены в равной степени, необходимо синхронизировать их выходные напряжения по частоте, начальной фазе и амплитуде. Поддержание амплитудного и, как следствие, действующего значения выходного напряжения в современных ИБП обеспечивается с высокой точностью (±1%) этого параметра и в наименьшей степени влияет на дисбаланс распределения общей мощности между параллельно включенными источниками бесперебойного питания. В значительной степени равномерное распределение мощности нагрузки между ИБП зависит от фазовых углов выходных напряжений, что в свою очередь определяется не синхронностью выходных частот ИБП. Различие всего в 1 электрический градус между фазами напряжений на выходе двух ИБП может привести к дисбалансу распределения потребляемой мощности до 50%. Если выходное напряжение одного ИБП сдвигается вперед по фазе, то он принимает на себя большую часть мощности общей для двух ИБП нагрузки. При равенстве амплитуд выходного напряжения это означает возрастание тока, потребляемого от этого ИБП. Чтобы сбалансировать уровень энергии между двумя ИБП, необходимо уменьшить частоту выходного напряжения опережающего по фазе ИБП. В современных устройствах эта корректировка может осуществляться со скоростью 0,1–1,0 Гц/с. Рассмотрим возможные способы организации параллельной работы ИБП.

Особенности последовательно-параллельного соединения АКБ

При таком подходе последовательное подключение аккумуляторов проводят одновременно с параллельным. Существует два возможных варианта:

  1. Сперва подготавливается требуемое напряжение путем последовательного подключения АКБ. Затем из нескольких таких сборок составляется система с необходимой электрической емкостью.
  2. Сперва соединяют аккумуляторы параллельно для увеличения емкости, затем увеличивают напряжение, соединяя сборки последовательно.

Емкость системы

В данном случае увеличивается и емкость, и напряжение. В примере на схеме подключили сперва по два аккумулятора последовательно, получив две сборки с емкостью 200 Ач и напряжением 24 В, а затем объединили готовые сборки параллельно. Таким образом, напряжение осталось 24 В, а емкость увеличилась до 400 Ач.

Для чего используется

Чаще всего используется для питания машин с электрическим приводом. Если говорить о литиевом аккумуляторе, то из них составляют акб для портативных компьютеров. 4 последовательных элемента по 3,6 В обеспечивают напряжение 14,4 В, а два параллельных – емкость 4800 мАч.

Кто здесь главный?

Чтобы надежно и предсказуемо функционировать в общей группе, источники питания, как правило, должны специально проектироваться для параллельной работы. Необходимы синхронизация при запуске, координация цепей защиты от неисправностей и стабильность контура обратной связи.

Для группы источников питания, соединенных параллельно с целью увеличения полезного тока нагрузки, требуется использование таких методов управления петлей обратной связи, которые учитывают совместную работу источников. Распространенной стратегией является включение источников питания без внутренних усилителей сигналов ошибки, когда вместо этого все источники объединяются в группу с общим входом управления, подключенным к одному усилителю ошибки. Этот усилитель регулирует выходное напряжение системы, а затем его сигнал обратной связи распределяется между всеми источниками питания в системе.

Основным преимуществом этой популярной стратегии управления является отличная стабилизация выходного напряжения. Кроме того, ошибки распределения уходят на второй план перед производственным разбросом коэффициентов усиления широтно-импульсных модуляторов преобразователей. С другой стороны, использование одного усилителя ошибки и однопроводной шины управления создает уязвимую для неисправностей точку, которая может стать источником проблем в некоторых высоконадежных системах. Кроме того, параметрические отклонения в модуляторе трудно контролировать, что вынуждает производителя к компромиссному решению в пользу управления распределением токов нагрузки.

В варианте с общей петлей регулирования ошибки распределения токов можно сделать минимальными, если жестко ограничить разброс параметров цепей управления источников. Во избежание перегрузки какого-либо источника в группе из-за больших ошибок распределения необходимо либо снизить расчетную нагрузку группы, либо использовать определенные меры противодействия. Для выравнивания ошибок распределения токов, обусловленных разбросом параметров цепей управления, может использоваться заводская регулировка для калибровки выходных ошибок (дорогостоящий метод), или добавление в каждый источник массива локального контура стабилизации тока (что увеличит сложность схемы и количество компонентов). Для измерения тока этих локальных петель, как правило, к источнику питания добавляют резистивный шунт.

Еще один проблемой, возникающей в случае группирования изолированных источников питания, имеющих собственные узлы управления с опорными уровнями на первичной стороне DC/DC преобразователя, является передача сигнала усилителя ошибки через изолирующий барьер между первичной и вторичной частями схемы. Использование изоляции часто увеличивает стоимость решения, отбирает существенную часть ценной площади печатной платы и, в зависимости от используемых для изоляции компонентов, может неблагоприятно влиять на надежность.

Вторая стратегия организации контура управления, позволяющая объединять источники в параллельные группы, основана на использовании сопротивлений силовых проводников в качестве балластных резисторов для метода, изображенного на Рисунке 1. При реализации технологии, называемой «droop-share» (распределенное снижение напряжения), каждый источник питания имеет свое опорное напряжение и интегрированный усилитель ошибки, но вслед за увеличением тока нагрузки опорное напряжение намеренно и линейно снижается на некоторую определенную величину.

Запараллеливание источников питания может оказывать негативное влияние на переходную характеристику и качество стабилизации выходного напряжения. В методе droop-share для распределения мощности между модулями в группе намеренно используется обратная характеристика регулирования. Из-за этого стабильность выходного напряжения группы droop-share, как правило, бывает хуже, чем у группы, созданной с одним традиционным усилителем ошибки. Если это нежелательно, для эффективной компенсации отрицательного наклона характеристики управления можно использовать внешний контур регулирования. Получающаяся погрешность статического регулирования идентична погрешности для случая традиционного усилителя ошибки, так как внешний контур сам по себе является интегратором ошибки.

Пару слов о BMS (Battery Management System)

Дело в том, что для того, чтобы управлять зарядом, предохранять от короткого замыкания и управлять силой выдаваемого тока к такой батарее надо приделать плату BMS (Battery Managment System). Самые простые выглядят вот так:

Чуть получше и дороже:

10S 36V на BMS говорит нам о том, что эта BMS рассчитана для 10 аккумуляторов, включенных последовательно. Если на каждом аккумуляторе будет по 3,6 В, следовательно, 10х3,6=36 Вольт что и написано на самой BMS.

Discharge current  – ток разрядки, то есть максимальный выдаваемый ток

Charge current – ток зарядки, то есть максимальный ток заряда

Внутри такой платы имеется все, чтобы полностью управлять состоянием батареи.

Схемы подключения таких BMS выглядят примерно вот так:

Как вы видите, у нас BMS вроде как должна заряжать только 10 банок в ряд. Но в нашей самопальной батарее их 40. Что же делать? Почему бы вместо одной банки не поставить в параллель 4 банки и не обмануть BMS?

Получается, схема с BMS 10s4p под плату с BMS будет выглядеть вот так:

В сообществе электронщиков и самоделкиных такая батарея называется 10S4P. Расшифровывается очень просто:

S – serial – с англ.  – последовательный.

P – parallel – параллельный.

В нашем случае 10 аккумуляторов последовательно и 4 в параллель – 10S4P. Все до боли просто)

А вот выглядит моя самопальная батарея для электровелосипеда пока что без модуля BMS.

Проверка работоспособности системы

В первую очередь убедитесь, что аккумуляторы целые, без трещин, без ржавчины и следов окислов. Провода на клеммах должны быть хорошо закреплены. Если внешне все в порядке, можно проверить напряжение и силу тока.

  1. Проверка падения напряжения при подключении нагрузки.
    К системе подключается нагрузка определенной величины и измеряется падение напряжения мультиметром или вольтметром. Можно провести проверку несколько раз, делая паузы между измерениями, чтобы дать заряду восстановиться. Полученные данные нужно сравнить с параметрами используемого типа батареи с учетом величины нагрузки.
  2. Измерение напряжения без нагрузки.
    У разных типов акб свои значения напряжения разомкнутой цепи. Например у свинцово-кислотного это 12,6 В.
  3. Использование нагрузочной вилки.
    Если в течение 5-10 секунд напряжение незначительно возрастает или стабильно, то система исправна.
  4. Проверка с помощью специальных анализаторов и тестеров.
    Можно быстро замерять напряжение и определять емкость с помощью приборов-тестеров, например, Кулон, PITE, Fluke, Vencon.
  5. Полная разрядка / зарядка.
    Это, пожалуй, самый достоверный способ. С помощью специальных устройств (УКРЗ) выполняется глубокая разрядка, а затем полная зарядка с непрерывным контролем емкости. Однако этот метод очень долгий, он может занимать от 15 часов до суток и более.

Напоследок несколько советов о том, как соединить аккумуляторы 18650:

  • лучше брать батареи фирм Panasonic, LG, Samsung или Sanyo;
  • никелевые полосы лучше, чем никелированные металлические;
  • аккумуляторы ни в коем случае нельзя перегревать, поэтому используйте точечную сварку, либо быструю пайку;
  • перед единением выравняйте напряжение на батареях с помощью зарядного устройства;
  • поставьте на сборку плату BMS.

Надеемся, мы помогли вам немного разобраться в теме, и вы сможете без проблем собрать свою систему акб, если потребуется.

КАК СОЕДИНИТЬ ВМЕСТЕ НЕСКОЛЬКО БП ATX

   В прошлой статье мы рассмотрели теоретические особенности и схему параллельного соединения двух БП от ПК, с целью суммирования их мощности. Теперь пришло время провести практические испытания. Для этого берем два блока ATX одинаковой мощности (хотя число блоков может быть и больше), в моем случае это два БП по 450 ватт.

   Подключаем нагрузку (нашел под рукой лишь лампу накаливания на 35 ватт). Подсоединяем лампочку к блоку и замеряем потребляемый ток. Он на уровне 2.42 А. Под рукой оказалась схема ШИМ регулятора, и с ее помощью снижаем ток до уровня 2 А для удобства контроля. 

   Дальше запараллеливаем минусовые провода блоков. Замеряем напряжение на каждом из них.

   На одном из блоков вышло 11.66 вольт, на другом 11.89 вольт.

   Как видим, разница в 0.23 вольта.

   Соединяем два блока в параллель через развязывающие диоды и замеряем ток потребления на каждом из выходов блоков ATX. 

   Стрелочный прибор включен на пределе 2.5 А. Как видно, из блока с меньшим напряжением ток потребления всего 200 мА, в то время, как у блока с большим напряжением — 1.8 А. Всю нагрузку он взял на себя. Рассчитаем балластные резисторы. Они должны быть 10-15% от входного сопротивления нагрузки. Теперь вопрос: как найти сопротивление нагрузки? Для этого нужно знать максимальный потребляемый данной нагрузкой ток. Например, мы знаем, что напряжение питания у нас 12 вольт. Потребляемый ток нагрузкой — 2 А. Берем формулу, которая должна быть знакома всем радиолюбителям: R=U/I. Подставляем наши числа 12/2 и получаем 6 Ом. Дальше берем 10% от полученного результата и получаем наш балластный резистор 0.6 Ом. Этот резистор ограничит потребляемый ток от одного блока ATX. Подставляем резисторы в нашу схему и смотрим что получилось:

   Как видите, ток плавно распределился между двумя блоками. Замеряем напряжения, которые идут с каждого блока (подключив к блокам сначала балластные резисторы, а потом диоды, что в данной схеме без разницы).

   Видно, что напряжения уравнялись.

   Попробуем теперь чуть повысить потребляемый нагрузкой.

   Нагрузка распределяется практически одинаково. Таким способом можно подключать три и больше стандартных ПК ATX блоков в параллель. На практике выяснилось, что если параллелить только два блока, то можно обойтись только одним резистором в цепи блока с большим напряжением. Подбирается он экспериментально так, чтобы токи потребления от каждого из блоков были равными. Можно обойтись и без резисторов, но для этого надо вскрыть блоки питания и с помощью подбора резисторов в цепи делителей напряжения (если микросхема TL494, то они подсоединены к 1 ноге) подогнать напряжения в блоках до максимально одинакового значения. Тогда они просто параллелятся через диоды соответствующей мощности. На рисунке видно, что из этого вышло.

   Запараллелив два БП по 450 ватт через диоды и замкнув их выходы на 12 вольт простой стальной проволокой — удалось раскалить ее до красна.

   К сожалению нет амперметра на 50 А, чтоб наглядно показать потребляемый ток. У цифрового мультиметра с пределом 20 А показания зашкалили и начали плавиться щупы. Один блок при таком замыкании сразу-же уходил в защиту. Автор статьи: Ксюня (Войтович Сергей).

   Форум по БП от ПК

Подключение материнской платы

Независимо от форм-фактора и бренда (MSI, ASUS, Gigabyte или любого другого), от БП к материнской плате подключается всего пара коннекторов – питание самой «мамки», а также процессора.

p, blockquote 3,0,0,0,0 –>

Это не последовательное, а параллельное подключение, так как все потребители питаются одновременно, а напряжение на каждом из коннекторов не зависит от остальных.

p, blockquote 4,0,0,0,0 –>

Для того, чтобы подать энергию к материнской плате старых моделей, использовались 20-пиновые коннекторы. Сегодня используются преимущественно коннекторы на 24 пина, иногда разборные (обозначаются 20 +4). Если вы скрупулезно подошли к покупке комплектующих и заказали совместимые модели, с подключением проблем не возникнет.

p, blockquote 5,0,1,0,0 –>

Этот коннектор сложно спутать с другими – на БП обычно он такой один, как и гнездо на «матери». Чтобы запитать эту плату, достаточно вставить штекер в гнездо и аккуратно вдавить его до щелчка, чтобы скоба фиксатора вошла в соответствующий паз.

Для извлечения же штекера, достаточно надавить на фиксатор, освободив скобу из паза, после чего его можно достать.

p, blockquote 6,0,0,0,0 –>

Что делать, если компьютер не включается

Если компьютер не реагирует на попытки включения после замены БП — возможно, что-то сделано неверно: не до конца подсоединен кабель или же к блоку питания подключены не все комплектующие.

Важно проверить корректность соединения всех элементов сборки, а также обратить внимание на положение кнопки на самом БП: она должна быть включенной. Нужно посмотреть, есть ли напряжение в сети, подключив любой другой электроприбор. В моделях с усиленной защитой от перепадов напряжения, например, Proton 850W, может сработать блокировка при сильно заниженном или завышенном вольтаже

В моделях с усиленной защитой от перепадов напряжения, например, Proton 850W, может сработать блокировка при сильно заниженном или завышенном вольтаже

Нужно посмотреть, есть ли напряжение в сети, подключив любой другой электроприбор. В моделях с усиленной защитой от перепадов напряжения, например, Proton 850W, может сработать блокировка при сильно заниженном или завышенном вольтаже.

Стоит открыть корпус и осмотреть визуально «внутренности», проверить надежность и корректность подключения составляющих системы. Можно попробовать отключить все периферийные девайсы и запустить комп повторно.

Совет: не лишней будет регулярная чистка ПК от пыли, которая может привести к нестабильной работе, поскольку мешает охлаждению. Бывает, что она просто засоряет контактную часть, из-за чего БП не сможет взаимодействовать с материнкой.

Как видно, присоединить блок к «матери» и другим внутренним составляющим PC нетрудно. Главное — действовать аккуратно и помнить, для чего предназначен каждый кабель.

Источник питания на примере гидравлики

Давайте рассмотрим водобашню, в которой есть автоматическая подача воды. То есть сколько бы мы не потребляли воды из башни, ее уровень воды будет неизменным.

Схематически это будет выглядеть вот так:

Башню с автоматической подачей воды можно считать источником питания. В химических же источниках питания происходит разряд, что ведет к тому, что уровень напряжения понижается при длительной работе. А что такое напряжение по аналогии с гидравликой? Это тот же самый уровень воды)

Давайте отпилим у водобашни верхнюю часть для наглядности. У нас получится цилиндр, который заполнен водой. Возьмем за точку отсчета уровень земли. Пусть он у нас будет равняться нулю.

Теперь вопрос на засыпку. В каком случае давление на дно будет больше? Когда в башне немного воды

либо когда башня полностью залита водой так, что даже вода выходит за ее края

Разумеется, когда башня наполнена только наполовину водой, на дне башни давление меньше, чем тогда, когда в башне воды под завязку.

Думаю, не надо объяснять, что если в башне вообще нет воды, то никакого давления на дне башни не будет.

По тому же самому принципу работает батарейка или аккумулятор

На электрических схемах ее обозначение выглядит примерно вот так:

Также, чтобы получить необходимое напряжение, одноэлементные источники питания соединяют последовательно. На схеме это выглядит вот так:

Любой аккумулятор или источник постоянного тока имеет два полюса: “плюс” и “минус”. Минус – это уровень земли, как в нашем примере с водобашней, а плюс – это напряжение, по аналогии с гидравликой это и будет тот самый уровень воды.

Возможно, вам также будет интересно

В последнее время за рубежом и в нашей стране наблюдается развитие модульного направления источников питания для различных образцов радиоэлектронной аппаратуры . Широкое внедрение в практику модульных принципов построения радиоэлектронных средств военного и специального назначения является основой создания современной номенклатуры источников питания, так как унификация позволяет быстро создавать специальную аппаратуру и сокращать сроки сдачи систем электропитания.

Опыт моделирования систем силовой электроники в среде OrCAD 9.2 Часть I Опыт моделирования систем силовой электроники в среде OrCAD 9.2 Часть II Опыт моделирования систем силовой электроники в среде OrCAD 9.2 Часть III Опыт моделирования систем силовой электроники в среде ORCAD 9.2. Часть IV Проблема постоянных времени в среде OrCAD 9.2 Одна из причин, которая

Драйвер силовых ключей XTR26010 компании X-REL для экстремальных температур

6 марта, 2014
Компания X-REL Semiconductor представила один из первых монолитных изолированных интеллектуальных силовых драйверов XTR26010 для карбидокремниевых, нитрид галлиевых (GaN) и кремниевых силовых ключей, работающий в условиях экстремальных температур.
Корректно работающий как с нормально включенными (JFET, MESFET), так и с нормально выключенными (MOSFET, JFET, BJT и SJT) транзисторами, драйвер XTR26010 обладает уникальными функциональными возможностями, позволяющими повысить уровень безопасности устройств и максимальную частоту коммутации. Эти особенности включают:

изолированное …

Общие принципы

Параллельное и последовательное соединение элементов давно известно и применяется в практической схемотехнике, для получения заданных номиналов элементов. На примере соединения резисторов это выглядит так:

Но резистор или конденсатор имеет только один основной параметр — номинал и вариант соединения просто изменяет их результирующую (суммарную) величину.

На практике часто используется параллельное (иногда электрохимических) и последовательное соединение источников питания.

Последовательное соединение используется для увеличения результирующего напряжения, а параллельное — для увеличения суммарного потребляемого тока.

Последовательное соединение электрохимических источников питания

При последовательном соединении параметры ( E и Ri) просто суммируются,

Самое главное, Вы должны знать:

Как я уже говорил, каждый источник питания (любого типа) имеет свои характеристики которые можно свести к статическим и полностью определяющим его характеристики — Ri, U( E ); Эти характеристики химических источников тока могут меняться от экземпляра к экземпляру или со временем случайным образом (они зависят от множества параметров на каждом этапе технологического процесса их производства);

Как выбрать блок питания для замены

Как выбрать БП на замену старому или вышедшему из строя? Дело это, в принципе, несложное. Прежде всего, форм-фактор

Их существует несколько, так что на это придётся обратить внимание, иначе потребуется крепить новый на проволочках

Если у нас корпус форм-фактора «Башня», который сейчас является самым распространённым, то нам нужен БП ATX (на фото выше сверху слева).

Теперь мощность. Если мы меняем старый блок из-за того, что он не тянет компьютер после апгрейда, то новый берём мощнее ватт на 150–200. Если меняем сгоревший, то можно взять той же мощности, что и стоял.

Мнение экспертаАлексей БартошСпециалист по ремонту, обслуживанию электрооборудования и промышленной электроники. Если в результате апгрейда компьютер обзавелся высокопроизводительной видеокартой, то понадобится ещё более мощный БП. Карта GTX 590, к примеру, увеличит энергопотребление на 250 (!) Вт.

И самое основное — наличие всех разъёмов, необходимых для подключения периферии. Причём нужно смотреть не только на их наличие, но и на достаточное количество. Есть, к примеру, БП с двумя разъёмами SATA. Если у нас SATA CD–привод и 2 жёстких диска, то одному устройству питания не хватит. Можно, конечно, докупить переходник MOLEX/SATA и вставить дисковод SATA в MOLEX, болтающийся без дела (а болтается их обычно множество). Но, во-первых, это лишние деньги. Во-вторых, это лишнее соединение, а значит, слабое звено.

Внимание нужно обратить на дополнительный разъём питания материнской платы и разъём видеокарты, если в наличии та, что питается по отдельному кабелю. Это самые ответственные разъёмы, питающие энергоёмкие устройства и собирать их из переходников очень нежелательно

Рассмотрим примеры таких разъёмов подробней.

Техника безопасности

  • используйте диэлектрические перчатки;
  • не прикасайтесь к клеммам голыми руками;
  • аккумуляторы должны быть отключены от нагрузок;
  • пользуйтесь инструментами с изолированными рукоятками;
  • проверьте клеммы и соединительные контакты перед подключением;
  • не используйте аккумуляторы с разными параметрами и степенью износа;
  • будьте внимательны с полярностью;
  • используйте подходящие провода для соединения;
  • изолируйте сборку от влаги

Ошибки коммутации и их последствия

Ошибки коммутации можно разделить на ошибки самого соединения (перепутали плюс и минус) и на неправильный выбор аккумуляторов и соединяющих проводов.

Если вы перепутаете клеммы, возможно следующее:

  • замыкание;
  • воспламенение;
  • оплавка проводов;
  • порча АКБ (падение мощности).

Помните, что при увеличении мощности потребуются соединяющие провода с подходящим сечением. Перед коммутацией понадобится тщательный расчет всех параметров. Про аккумуляторы мы уже писали выше; если вы соедините неподходящие акб, вы их испортите.

При параллельном соединении источников тока возрастает

Пусть батарею образуют n

последовательно соединенных элементов. Батарея замкнута на внешнее сопротивлениеR (рис. 3.7). Сопротивлением соединительных проводов пренебрегаем. Запишем для всего замкнутого контура, образующего цепь, второе правило Кирхгофа. Оно имеет вид:

В общем случае при последовательном соединении нескольких источников с различными ЭДС сила тока определяется отношением суммы ЭДС всех источников тока к полному сопротивлению всей цепи:

где – внутреннее сопротивление i

-го источника,R сопротивление нагрузки.

Последовательное соединение источников эквивалентно источнику тока с большой ЭДС, однако при этом возрастает его внутреннее сопротивление. Чтобы такое соединение привело к увеличению тока в нагрузке по сравнению с током от одного источника, необходимо, чтобы . При этом .

Рассмотрим параллельное соединение в батарею n

одинаковых элементов с ЭДС и внутренним сопротивлениемr (рис. 3.8). Пусть батарея замкнута на внешнее сопротивлениеR. Сопротивлением соединительных проводов пренебрегаем. Согласно первому правилу Кирхгофа сила тока в неразветвленной части цепи равна сумме сил токов во всех элементах батареи. Поэтому через каждый из элементов в отдельности протекает ток силой . Применим второе правило Кирхгофа к замкнутому участку цепиABCDEF . Тогда получим . Отсюда . Таким образом, при параллельном соединенииn одинаковых элементов в батарею ЭДС не меняется, а внутреннее сопротивление уменьшается вn раз. Легко видеть, что параллельное соединение элементов выгодно при малом внешнем сопротивлении. Действительно, если , то им можно пренебречь, и формула приближенно принимает вид , то есть сила тока возрастает вn раз по сравнению с силой тока от одного элемента.

Источник